Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Jian-Yu Jin, ${ }^{\text {a }}$ Li-Xue Zhang, ${ }^{\text {b }}$ * San-Nu Zhou, ${ }^{\text {b }}$ Hong-Ping Xiao ${ }^{\text {b }}$ and An-Jiang Zhang ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Educational Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail:
zhanglixuelz@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.063$
$w R$ factor $=0.157$
Data-to-parameter ratio $=13.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

6-(4-Chlorophenyl)-3-(2-ethoxyphenyl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazine

The title compound, $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{OS}$, was prepared by the reaction of 4-amino-3-(2-ethoxyphenyl)-5-mercapto-1,2,4triazole and 2-bromo-4'-chloroacetophenone. The dihedral angle between the triazole ring and the benzene ring bearing the ethoxy substituent is $17.7(1)^{\circ}$.

Comment

1,2,4-Triazoles fused with six-membered ring systems are found to possess diverse applications in the fields of medicine, agriculture and industry (Turan et al., 1999; Invidiata et al., 1996; Chadha et al., 1998). The commonly known systems are triazoles fused with pyridine, pyridazine, pyrimidine, pyrazines and triazines. Moreover, a large number of triazolothiazines have been shown to exhibit antimicrobial (Feng et al.,1992) and diuretic (Mohan \& Anjaneyulu, 1987) properties and act as photographic couplers (Holla et al., 2001). On the other hand, a literature survey reveals that there are not many examples of triazoles fused with thiadiazines. Under the expectation that attaching 2-ethoxyphenyl and 4-chlorophenyl groups to $7 H-1,2,4-$ triazolo[3,4- $b][1,3,4]$ thiadiazines can produce some new biological activities, we have synthesized the title compound, (I).

(I)

In (I), the six-membered thiadiazine ring, $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 9 / \mathrm{S} 1 / \mathrm{C} 8 /$ C 7 , is distorted from planarity, with an r.m.s deviation of $0.251 \AA$ and the ring exists in a half-chair conformation; atoms C8 and S1 deviate -0.401 (2) and 0.330 (1) \AA, respectively, from the mean plane (Fig. 1). Both $\mathrm{S}-\mathrm{C}$ (with a mean distance $1.770 \AA$) and $\mathrm{C}-\mathrm{N}$ bond lengths are comparable to those in related compounds 6-(2,4-difluorophenyl)-3-(3-methylphen-yl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazine (Xiang et al.,

Received 6 December 2005 Accepted 22 December 2005 Online 25 January 2006
2004) and 3-(3-hydroxypropyl)-6-(p-tolyl)-7H-1,2,4,-tria-zolo[3,4-b][1,3,4]thiadiazine (Zou et al., 2004). The bond lengths in the triazole ring show normal values (Allen et al., 1987; Jin et al., 2004; Table 1). The dihedral angle between the triazole and $\mathrm{C} 11-\mathrm{C} 16$ benzene rings is $17.7(1)^{\circ}$ and that between the C1-C6 and C11-C16 benzene rings is $13.9(1)^{\circ}$.

Experimental

4-Amino-5-mercapto-3-(2-ethoxyphenyl)-1,2,4-triazole was prepared from 2-ethoxybenzoic acid hydrazide according to the literature method of Zhang et al. (1990). To a solution of 4 -amino-5-mercapto-3-(2-ethoxyphenyl)-1,2,4-triazole (0.001 mol) in absolute ethanol was added 2-bromo- 4^{\prime}-chloroacetophenone (0.001 mol). The mixture was refluxed for 7 h . The solid obtained on cooling was filtered, washed with cold water, dried and recrystallized from ethanol to give compound (I). The purified product was dissolved in 95% ethanol and kept at room temperature for 5 d , whereupon colourless single crystals were formed.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{OS}$

$M_{r}=370.85$
Monoclinic, $P 2_{1} / c$
$a=12.8542$ (9) \AA
$b=13.3382$ (11) \AA
$c=10.3438$ (11) \AA
$\beta=99.488$ (2) ${ }^{\circ}$
$V=1749.2(3) \AA^{3}$
$Z=4$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.869, T_{\text {max }}=0.956$
8700 measured reflections
$D_{x}=1.408 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2432 reflections
$\theta=2.2-24.8^{\circ}$
$\mu=0.35 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless
$0.41 \times 0.15 \times 0.13 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.157$
$S=1.06$
3053 reflections
227 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 1$	$1.741(3)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.358(4)$
$\mathrm{S} 1-\mathrm{C} 9$	$1.734(4)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.378(4)$
$\mathrm{S} 1-\mathrm{C} 8$	$1.806(4)$	$\mathrm{N} 3-\mathrm{C} 9$	$1.299(4)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.287(4)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.404(4)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.392(3)$	$\mathrm{N} 4-\mathrm{C} 10$	$1.308(4)$
$\mathrm{C} 9-\mathrm{S} 1-\mathrm{C} 8$	$95.27(16)$	$\mathrm{C} 10-\mathrm{N} 4-\mathrm{N} 3$	$107.5(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$	$115.8(3)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$123.8(3)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 10$	$105.1(3)$	$\mathrm{N} 3-\mathrm{C} 9-\mathrm{N} 2$	$111.1(3)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{N} 1$	$128.4(3)$	$\mathrm{N} 3-\mathrm{C} 9-\mathrm{S} 1$	$128.7(3)$
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{N} 1$	$124.2(3)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{S} 1$	$120.1(3)$
$\mathrm{C} 9-\mathrm{N} 3-\mathrm{N} 4$	$106.8(3)$	$\mathrm{N} 4-\mathrm{C} 10-\mathrm{N} 2$	$109.5(3)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$-3.9(4)$	$\mathrm{C} 9-\mathrm{S} 1-\mathrm{C} 8-\mathrm{C} 7$	$-48.5(3)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{S} 1$	$45.2(4)$	$\mathrm{C} 8-\mathrm{S} 1-\mathrm{C} 9-\mathrm{N} 2$	$24.8(3)$

Figure 1
The molecular structure of (I), with the atom-numbering, showing displacement ellipsoids at the 30% probability level.

All H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $\mathrm{Csp}^{2}-\mathrm{H}=0.93 \AA$ and $\mathrm{Csp} p^{3}-\mathrm{H}=$ 0.96 or $0.97 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ parent atom $)$ and $1.5 U_{\text {eq }}($ parent methyl atom). The short C17-C18 bond and the large displacement parameter of atom C18 are probably the result of unresolved disorder or a large amplitude libration of the ethyl group around the $\mathrm{O} 1-\mathrm{C} 17$ bond axis.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. M203149).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Chadha, V. K., Ranwa, N. S. \& Dadheech, P. K. (1998). J. Phytol. Res. 11, 201202.

Feng, X.-M., Chen, R. \& Yang, W.-D. (1992). Chem. J. Chin. Univ. 13, 187-194.
Holla, B. S., Akberali, P. M. \& Shivananda, M. K. (2001). Farmaco, 56, 919927.

Invidiata, F. P., Simoni, D., Scintu, F. \& Pinna, N. (1996). Farmaco, 51, 659-664.
Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. \& Shen, L. (2004). Acta Cryst. C60, 0642-o643.
Mohan, J. \& Anjaneyulu, G. S. R. (1987). Pol. J. Chem. 61, 547-551.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Turan, Z. G., Kaplancikli, Z. A., Erol, K. \& Kilic, F. S. (1999). Farmaco, 54, 218-223.
Xiang, G.-Q., Zhang, L.-X., Zhang, A.-J., Cai, X.-Q. \& Hu, M.-L. (2004). Acta Cryst. E60, o2249-o2251.
Zhang, L.-X., Zhang, Z.-Y. \& Zeng, F.-L. (1990). Chem. J. Chin. Univ. 11, $148-$ 151.

Zou, K.-H., Cai, L.-Q., Chen, J.-X., Zhang, L.-X., Zhang, A.-J. \& Hu, M. L. (2004). Acta Cryst. E60, o1736-o1738.

